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Correlation Dimension
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In many situations, both deterministic and probabilistic, one can develop
further the study of the multifractal structure of a dynamical system, particularly
when there exist strange attractors. Multifractal refers to a notion of size
emphasizing the variations of the weigth of the measure. In such schemes, one
has to compute a free energy function associated to some sequence of partitions.
We relate the free energy function, associated to a sequence of uniform parti-
tions of exponentially decreasing diameters, and the correlation dimension
which refers to a quantity that is the most accessible in numerical computations.
Finally we discuss of two assumptions for the existence of free energy functions.

KEY WORDS: Correlation dimension; multifractal; thermodynamic formalism;
free energy function.

INTRODUCTION

Let (A', u, g) be a dynamical system where X is a metric compact space, g
a transformation X-* X and u a g-invariant ergodic measure on X. We
define now a natural quantity
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which is the most accessible in numerical computations based on time-
series of a dynamical system, [GHP,P] and we are interested, when it exists,
in the value
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Up to now, no dynamics was involved. A dynamical interpretation is the
following. Let g be continuous and preserving a Borel normalized ergodic
measure. Given (x, y) eXx X, let

and therefore

We have then

Let then the diagonal

—d is the metric on X—and the direct product measure

This function, known as the correlation dimension[GHP,HP,O,P,PT,Si2,Si3]

arises in the numerical investigation of strange attractors and other models
involving fractal measures for B = 1, and differs in general with other
characteristic dimensions.

Let us follow the approach suggested by D. Ruelle and described in
ref. [P], Let then the space Y = Xx X equipped with the metric

and when it exists

We extend these notions to a real valued function for any real ft by
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The measure v is invariant and ergodic for the Z2-action g i , j ( x , y ) =
(g'(x), gj(y)). It is proved in ref. [P] that for v-a.e. point (x, y)

which means that

and when the limit exists C= C+ = C~ following (0.1) and (0.3).
We know that in many examples, included all the ones we study, we

have

refs. [CLP, HJKPS, M, Ma, O, R, Sil, Y], (where hu denotes the entropy
and Xu the Lyapunov exponent).

In many examples studied intensively, [BMP, CLP, EM, HJKPS, Hw,si1] the
value a' in (0.4) satisfies a' =F'(1) where F is a concave free energy func-
tion, defined for any real B (when it exists) from a sequence of partition
functions (Zn)n > 1 .

where

is derived from a sequence of partitions (Un)n>1 whose diameters tend to
0 when n-> +00 (#Un = mn). By a simple argument (when F' exists) we
get

We have also [CLP,R,Sil]



in some significant cases when the partitions used are uniform (when F
exists!).

For one-dimensional expanding Markov maps (see 1.2), we have
proved the relation (0.8) in ref. [Si3]. In the same paper, it was easily
generalized to the case of Axiom A surface diffeomorphisms.

We found in ref. [Si2] a very easy proof of this statement for a two-
dimensional dynamical system: the Sierpinski carpet (see 1.5),[0] which is
very suitable for the calculations.

In the previous cases we were able to compute the two functions and
therefore to compare them. In fact, by adapting the proof, we realize that
the statement was more general.

Nevertheless in all the cases, the most important step, often proved by
the hard way with large deviations theorems, is the existence of the free
energy function F (there is also a dynamical free energy, the pressure,
associated to the dynamical partition: the so-called Markov partition, more
intrinsic, easier to compute and more regular). This existence is discussed
in the Section 4 where we give two assumptions which are satisfied by
many relevant cases in the literature of different domains in sciences.

1. EXAMPLES

For all dynamical systems presented here there exists a free energy
function, given explicitely in some cases, although the partitions which
appear naturally (dynamically) are not generally uniform. The Example 1.1
is used in Section 3.

1.1. Multiplicative Chaos

One studies a class of random measures obtained by random iterated
multiplications. To this model corresponds a rigorous study of the phase
transition of a system with random iteractions. This occurs in different
domains of physics and chemistry: [CK,CD,DS,F,HW,K,KP] polymers, spin
glasses, thermodynamic, turbulence, traveling waves, rainfall distribution...

Consider the interval I=[0; 1], an integer b^2, W a non negative
with mean 1 random variable, and { W ( i l , i2,..., in„)/n e N*, VfceFy* ,

( = in the degenerate case when F is linear, and > in the general case when
F is strictly concave) and it is proved[Si2,Si3] in general situations that
F(2) = C(1).

Our aim is to prove the variational principle (Theorems 2.1 and 2.5):
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0^ik<b} a sequence of i.i.d. random variables distributed like W. Let un

be the measure defined on [0; 1[ (on the uniform partitions) in the follow-
ing way:

then nn is defined by its density

The representation theorem of martingales (with respect to the proper
<7-algebra Fn = a{ W(il, i2,-,in/0 < ik < b}) assures us the existence of the
limit

We define the measure ^ associated to the random variable WB like un

was associated to W, and let

We can present this model (isomorphically) with the b-tree construc-
tion (the multiplicative cascade): the indexes (i1, i2,..., in) code a branch of
length n, and the random variable W=eY. We take the sum over all the
branches t of length n, and Sn(t) the sum of the i.i.d. random variables Y/.
of the vertices met along the branch t, and this gives

If we take Y upper and lower bounded, then there exists a limit in (1.1.3)
when n goes to +oc,[HW,KP] and the limit is a free energy function F
associated to a sequence of uniform partitions ( U n ) n > 1 of diameters b~".

1.2. Expanding Markov Maps

Let X be a closed interval, [0; 1], or the circle S1, and g a Markov
map on X.[CLP] This example was probably the first studied rigorously



with #(S) = c, we define the fractal set

Moreover, the measure U is the Gibbs measure of a real Holder continuous
function <j>: X-* R. Up to the regularity this is a subcase of 1.2 and the
results are similar.

1.4. Axiom A Diffeomorphisms

We study here a two-dimensional dynamical system.[B,RU, Sil] Let X be
a compact manifold of dimension 2 (for example the torus) and g a C2

axiom A diffeomorphism. The g-invariant measure U. is the Bowen-
Margulis measure—the one that realizes the maximum of topological
entropy—or the Gibbs measure of a real Holder continuous function
if>: A -> R (A basic set).

One finds in ref. [Sil] explicit formulas of the free energy function
associated to a sequence of uniform partitions and the two quantities in
(0.8) are shown to be equal.

1.5. The Sierpinski Carpet

This is an example of a two-dimensional dynamical system contracting
in the two directions with different ratios. The Sierpinski carpets are planar
generalized Cantor sets and are defined on [0; l]2.[Mc, O,Si2] Given integers
n^m and a set

from the point of view of multifractal properties. Particularly it has been
proved the existence of a C2 free energy function, and by reducing the
problem from dimension 2 to dimension 1 it is in fact an analytic free
energy function associated to a sequence of uniform partitions.CS|1]

1.3. Cookie-cutters

Let A^=[0; 1] and I0 and I1 two disjoint closed subintervals of X.
A cookie-cutter[R] is a C1 +a map g: I0 u Ij -> R such that
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The measures n that are considered are Gibbs measures. It has been
calculated explicitely in ref. [Si2] the two functions, and therefore we
proved (0.8) very easily.

1.6. Recursive Digraph Fractals

One starts from a directed multigraph (V, £).[EM] The set E is com-
posed of the edges of the graph, and the elements of V are the vertices. This
graph is supposed to be strongly connected, that is, there is a path from
any vertex to any other along the edges of the graph (there are also two
edges leaving each node). A digraph recursive fractal is based on seed sets,
nonempty compact subsets of Rn with an usual "open set condition," Ju for
each we V, and ratios r(e)e]0; 1[ (which represent homotheties in R").
The measure n that we use is of Markov type and is defined recursively.
We can prove for this H-dimensional dynamical system the existence of a
spectral radius[EM] which is — F.

2. VARIATIONAL PRINCIPLE

We suppose that our dynamical system satisfies the existence of a free
energy function F (0.5) associated to a uniform partition (U n ) n > l of
diameters b-n where b>l. We have then

Theorem 2.1. We have

We consider for convenience the quantities L(r)= —C(r, 1) and we
have obviously for any real a > 1

Proposition 2.2. The sequence ( L ( a - n ) ) n > 1 is convergent if and
only if

Then Theorem 2.1 follows directly from Lemmas 2.3 and 2.4. We give
here a proof in the case where we study a one-dimensional dynamical
system, and we easily generalize in the remark. The first step is to compute
an upper bound of the supremum limit which is given by

Lemma 2.3. We have



Proof. We compute like in (2.1) for any integer n

Since we have for any Ue Un \ U\ = b-n, we get for any x e U

Taking the upper limit in (2.3), we obtain the result since the right-hand
side converges to — F(2). |

Remark. In higher dimension me N*, the number of neighbours V
(included U) which appear in (2.2) is 3m, and the constant which appears
in (2.3) is 9m. Hence we get the same result.

We establish a reciprocal since we obtain a lower bound of the infimum
limit in

Lemma 2.4. We have

Comparing (2.1) and (2.2), we obtain therefore

For any Ue Un (with at most two exceptions), we take respectively the
left neighbour V and the right neighbour W in the partition. We have
obviously for any xeU, B(x, b~") c: Fu 17 u W, and we get
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hence we obtain finally

Taking the lower limit in (2.4), we obtain the result since the right-hand
side converges to — F(2). |

Remark. In higher dimension m e M * , we have not V.vet/,
U<=B(x<b-"). It suffices to replace b~" by ( b - e ) ~ " for s>0, and then for
any integer n^N(m,e.)

We can easily generalize with

Theorem 2.5. We have for any real ft

For B = 0, both quantities C(0) and F ( 1 ) are 0. It is clear that the result
follows for any positive B and that for B < 0, the proofs are also
analogous. |

3. LOCAL DIMENSION

The dimension of a measure is directly related to entropy and
Lyapunov exponents. [Ma,Y] The unstable directions are crucial since there
is no contribution in neutral or contracting directions for entropy.[LY1]

Nevertheless, neutral and contracting directions have influence on dimen-
sion. [LY2]

One can ask whether or not there exist assumptions for the existence
of the almost sure value of the local dimension (0.4). For example, if the
measure U is a finite Borel measure on R (or R"), one proves, via the
Besicovitch covering lemma[G,LY1] that for u-a.e. x

and we obtain the same inequality when e goes to 0.
Mixing the results of Lemmas 2.3 and 2.4, we get the existence of C( 1)
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and

There is a conjecture of Eckmann and Ruelle[ER] claiming that if g
is a C1 + a diffeomorphism with non-zero Lyapunov exponents,[Sil,Y]

then (0.4) holds for u-a.e. xeX. On the other hand Ledrappier and
Misiurewicz[LM] constructed an example of a smooth map on [0; 1]
preserving an ergodic measure for which (0.4) does not hold on a set of
positive Lebesgue measure (see also Cutler[C] where the local dimension
depends on x or ref. [S]).

Good schemes seem to be hyperbolic dynamical systems; in dimension
1, 1.1, 1.2, 1.3 and ref. [L]: with Gibbs measures;[CLP,HJKPS,HW,R] in

dimension 2,1.4 and 1.5: with Gibbs measures or Markovian measures[M, O, Sil]

or with invariant ergodic measures with non-zero Lyapunov exponents;[Y]

in dimension n, 1.6: with Markovian measures.
We can notice that it is possible to construct examples where the

differences between all dimensions are very sharp.[Y]

We see, with some counter examples, that it is not easy to get general
results to the following questions.

Question 1. Does the existence of the almost sure local dimension
(0.4) a' imply the existence of the free energy function Ft The answer is no.

We take the dynamical system defined in 1.1, the multiplicative chaos,
using the same notations. With the definition of the measure ft, we can
compute a' since

where we have W(il,i2,...,ik) = bY(i^1^ '*' and the ( Y k ) k > 1 are i.i.d. ran-
dom variables satisfying 1 = E( W) = E(ey) (E( Y) ^ 0).

Following refs. [F, HW, KP], let for any real B



With some regularity of the free energy function F, for example at least
C2, have we a '=F ' ( l )?

4. EXISTENCE OF FREE ENERGIES

A good scheme in the study of free energy functions is an ergodic
dynamical system (X, u, T) where X is a compact metric space, T is a map

such that F is C00 everywhere except at Bc where it is not even C2

(Bc< +co «>/>P(Y=esssup Y)< 1 where esssup K=sup{>'e K/P( Y<y)
< 1}). If we have some restrictions on the exponential moments of the
random variable W, then the function F will not be defined on a part
of R.

Question 2. Does the existence of the free energy function imply
the existence of an almost surely unique local dimension? The answer is no.

Let the metric space X=[0; 1]2 and the measure U = 1/21, xc)0 +
1/2^2 where 1, is one-dimensional Lebesgue measure on [0; 1], S0 is the
Dirac unit mass measure at 0 and A2 is two-dimensional Lebesgue measure
on X.[HW]

We compute the free energy function F and we obtain
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where W is taken with exponential moments. Then there exists a free
energy function F and a critical value in R (temperature since B= 1/AT)

We show that on two sets of U-measure 1/2, the limits in (0.4) are
respectively 1 and 2 (which are respectively the left derivative of F at 1 and
the right derivative of F at 1 - compare with (0.7)). Actually it is easy to
verify that for a point M(x, y) of X we have:

• If M(x, y) satifies y = 0 then we get

• If M(x, y) satifies y > 0 then we get



We try to show that these assumptions are relevant. The idea is to
construct, at any rank n and for any real B, sets of elements of Qn where
the distribution of the mass of the U( U)B of the partition functions (0.6) is
the larger (in the scale 1/n Log), and is the place where the large deviations
occur.

Remark, This assumption is satisfied by a large class of maps (hyper-
bolic: C1 + <5 expanding Markov maps, axiom A diffeomorphisms, confor-
mal expanding maps, recursive digraph fractals...) since the dilatation of the
elements of the dynamical partition is controlled by e Log T' ( < 0 for
e = +1) which is supposed Holder continuous on the compact X. We get
uniformly in n

Assumption 2. There exist two constants c and d ( < 0 ) and an
integer N ^ 1 such that for any integer n ̂  N and any U e Qn

Remark. This assumption if satisfied by a large class of measures,
namely Gibbs measures. Let (j> e CS(X) the potential associated to the
measure u. We get uniformly in n

onto X (Cl + s, C2, hyperbolic, expanding...) and u is a Gibbs measure—
a T-invariant Borel probability measure—associated to a potential which
is a <5-H61der continuous function <j>. Such dynamical systems are very
common and relevant for the study of physical systems. We shall use a
constructive method based on large deviations on the Markov partitions
(2«)n» i which is given by the iterations of the dynamical partition.

We shall discuss of two assumptions.

Assumption 1. There exist two constants a and b ( < 0 ) and an
integer N^ 1 such that for any integer n ^ N and any Ue Qn with u ( U ) ^ 0
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For the Assumption 1, let us define for any integer n ^ 1 the sequences

and at the limit

1. assume a= — oo: there exist a subsequence ( n k ) k j l l and elements
Ak e Qnk such that ank(—k)-> — oo and U ( A k ) ^ e x p —knk. Take any real
B < 0 and compute the following

This means that the free energy function is degenerate ( + oo) for B < 0, and
for interesting cases a is finite. This gives the left-hand side.

2. assume b = 0: there exist a subsequence (nk)k>l and elements
Bk e Qnk such that ( -2/k) <bnk^0 and ( - 1/A:) < ( 1 / n k ) Log^(Bk) sc0. We
get for B^ 1 (since we have the following inequality n(U}^^n(U))

and then

which means that the free energy function is degenerate ( =0) for B^ 1.
Therefore we take b< 0 and this gives the right-hand side.

These two cases lead us to consider Assumption 1. The Assumption 2
is treated similarly.

In the following we try to motivate these assumptions in quite general
situations. The idea is to construct sets included in the partitions Qn which
are made of elements of "same" measure and "same" length which are
preponderous in the computation of the partition functions and by the way
to the free energy function.

822/90/1-2-33



where we have the following

Therefore we obtain

and this gives

and we have obviously since the integer i varies in a linear scale

Define the integer n(i, B) such that for any B e R.

The elements of this set have "same" measure since we have e '<//([/)<
e' + 1. From (0.6), the partitions functions satisfy for any real ft

By Assumption 1 we can define for any integer i e [an; bn — 1 ] (i<0)
and for any real B the sets (since elements of Qn satisfy: (1/n) Log//(f /)e
[a; b] which are empty for integer i$ [an; bn — 1 ]
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We get finally

where the set En(i<^ satisfies the desire property.

Consider the Borel probability measures

and

which indicate the distribution of the set En(i</3). Since the set M(X) is a
compact set there exists a subsequence ( n k ) k l f i such that

We introduce these measures since they indicate where the distribution
of the mass of the u( U)B of the partitions is the larger. Notice that we con-
sider the length of the elements U. To this purpose we want to control the
distribution of the length and this is where we use assumption 2. The idea
is to choose preponderous elements of "same" length among the elements
of En(i,B), and this is done by the same fashion.

Let us define for any integer ye [cn; dn — 1 ] and for any real B the sets

The elements of this set have "same" measure since they belong to the set
En(i,B). Moreover they have "same" length since we have: ej< U| ^ej+l.

Let n(j, B) the integer among the n(j) such that for any Be R

We have then
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and therefore with (4.1) (since l/n Log(d— c)n tends to 0 at the limit)

which implies finally

since we have by definition

Remark that the different sets Hn ( j , B ) are composed of elements of
"same" measure exp{n(i, B)} and "same" length exp{n(j,B)} ~b(n, B)""
(in the scale l/n Log), and it is where the large deviations occur. This leads
to

Consider the Borel probability measures

and

Since M(X) is a compact set there exists a subsequence ( n k ) k > 1 such that

Recall that ^ is the distribution of uniform elements UeHn( j ,B) which
cover the subset of X which is preponderous for the distribution of the
mass u ( U ) B . The sequences in (4.3) (1/n) Log#H n ( J , B ) , (n(i, B)/n) and



(n(j, B)/n) have connections with the measure C^. The basis b in the following
expression depends on ft
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